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Characterizing carbonaceous aerosol 

• both organic and elemental carbon components in aerosols are poorly understood
• develop health effects mechanisms (and apportion endpoints) 
• atmospheric reactions and processing
• direct and indirect climatic effects of aerosols
• improved exposure estimates
• dispersion modeling
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General discussion focus

• analytical chemistry and source emissions aerosols
• chemical mass balance (CMB) modeling

• case examples
– two-dimensional gas chromatography-mass spectrometry (2D GC-MS) for the 

identification and quantification of N-bearing molecules in biomass burning aerosols
– GC with atomic emissions detection (AED) for organosulfur constituents in 

residential boiler effluents 
– high resolution-transmission electron microscopy (HR-TEM) for soot nanostructure 

determination
– X-ray photoelectron spectroscopy (XPS) for determining aerosol surface chemistry 

and carbon chemical state 
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2D-GC-MS applied to aerosols 

Motivation
• deconvolve unresolved complex mixture 

(UCM) components 
• develop thermal extraction (TE)-2D-GC/MS 

for characterizing PM2.5 source emissions 

• apply heart-cutting method
• serial concentration
• column length adjustment
• traditional quantification possible
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2D-GC-MS applied to biomass burning aerosols 
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Biomass burning

 Engine

8.9

• total NOCs range from 2.1 to 46.5 mg/g PM2.5 mass for biomass burning
• 2-hydroxypyridine has the highest conc., 40-90% of total detected NOCs
• most NOCs specific to biomass burning PM2.5
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2D-GC-MS detected NOCs in source aerosols
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GC-AED applied to residential oil boiler aerosol 

• AED (atomic emissions detector) - overlooked detection system
• column separation complemented by selective detection (pg/s)
• identify specific components in unresolved complex mixture (organometallics)
• element mass, empirical formulas, improved OM:OC ratio

• AED source – microwave-induced He plasma
• C, O, S (181 nm), N, Hg, Ni, V, Fe, P, Sn, Cl, and Br
• sample – residential oil boiler (ROB) aerosol (solvent extract)

• No. 2 distillate fuel
• GC method (Mazurek et al., Rogge et al.; Schauer et al.)  
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GC-AED applied to ROB aerosol 

• ROB is a source of organosulfur compounds
• unburned fuel

• UCM deconvolved (unidentified by GC-MS)

• empirical formula will require better separation
• 1% of S in fuel in PM (sulfate)
• fractionation and clean-up needed  
• check more oil source emissions
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• ICP-MS detected Pb, Mn, Sn, As, and Se
• metals below detection AED limits
• no evidence of organically bound metals

Check for Organometallics in ROB aerosol 
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HR-TEM (transmission electron microscopy for 
soot nanostructure determination

• resolves details of soot (EC) nanostructure (less than 1 nm)
• carbon atom arrangements (layer planes, segments, or lamella)

– physical order (long and short range; graphitic or amorphous) 
– heteroatom inclusions, surface interiors, porosity
– extent of mixing
– quantify fringe or layer plane, separation distance, curvature, and tortuosity

• particle inception and growth
• mechanisms of particle uptake by biological samples
• apportion major sources of light absorbing EC

– single particle sensitivity, EC is nonreactive, sources lacking organic matter 
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Experimental details – HR-TEM

• seven filter samples (5 diluted source emissions and 2 atmospheric samples)
– significant EC and aerosol mass sources 
– diesel, wildfire, oil boilers, jet engine, NFRAQS, Duke Forest 

• wet or dry deposition process to TEM grid
• HR-TEM analysis (three or more sample locations depending on sample

homogeneity) 
• lattice fringe analysis – quantitative measure 
• NASA Glenn Research Center

• the research questions:
– is soot from different fuel and combustion sources homogeneous?
– do atmospheric particles contain nanostructure that varies with fuel and combustion 

source characteristics? 
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large-scale distillate oil-fired boiler diesel truck exhaust

wildfire emissions jet engine exhaust

• EC is nanoheterogeneous
– internal and external 

mixture 
• interior-perimeter effects 
• fullerenic structure –

anthropogenic emissions
• fringe analysis confirmed 

subtle differences
• variety of soot types in 

atmospheric aerosols
• complement source-

receptor modeling

• receptor model caveats
– reactivity of 

amorphous soot
– inter-source variation

fullerene structure



13

0

5

10

15

20

25

0

5

10

15

20
oil fired boiler –residual oil

0

5

10

15

20

25

0

5

10

15

20
oil fired boiler – distillate oil 

0

5

10

15

20

25

0

5

10

15

20
jet engine exhaust 

0

5

10

15

20

25

0 0.72 1.44 2.16 2.88 3.6 4.32 5.04 5.76
Fringe Length (nm)

0.32 0.35 0.37 0.40 0.43 0.46 0.48
Separation Distance (nm)

0

5

10

15

20

1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96
Tortuosity

diesel engine exhaust 
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a b c

XPS (ESCA) for aerosol surface chemistry

• heteroelements, surface functional groups, carbon bonding states uncharacterized
• surface composition modulates SOA yield and particle oxidation rate
• organic matter concentrated at or near the particle surface 
• health effects might be surface-related

• the research questions:
– how do source particle surfaces differ compositionally (and with bulk chemistry)?
– how does particle nanostructure convolve in tandem with its surface composition? 
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XPS technique and experimental details

• measured difference between ejected electron 
energy and incident beam = binding energy 

• 1-10 nm sample depth
• survey scan and high resolution scan

– elements determined to within ±0.1% 
(atomic) 

– HR scan for carbon bonding states and 
functional groups (10 sweeps 7 cycles)

– curve fit C1s region 
– Lorentzian and Shirley fit

• examined emissions from plant-, institutional-, and residential-scale oil boilers, 
diesel and bio-diesel engine exhaust, wildfire, and aircraft engines  
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Surface composition of source aerosols 

• mostly surface carbon
• oil boilers show reduced C

• contain S and O (sulfate)
• biodiesel lacked surface O
• wildfire - surface OM:OC ratio = 1.2

agreed with bulk S 
composition
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• slight shift in  C1s binding energy indicate different oxygen functional groups
• percentages of carbon atoms apportioned to oxygen functional groups 
• different carbon bonding states at the particle surface
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